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The State of California has made control of GHG 
emissions a priority. In California, methane and other non-CO2
GHGs are estimated to be a significant fraction (~ 15%) of total 
GHG forcing, with CH4 contributing a large share.

However, current inventory and model-based estimates of 
non-CO2 GHG emissions are extremely uncertain, because 
many of the factors controlling emissions are poorly quantified.
The California Energy Commission is supporting the design and 
implementation of initial measurements to estimate regional 
emissions of non-CO2 GHGs using inverse techniques.
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Two tall towers were chosen as observation sites for the 
simulations described in this work.  The towers are located  
above San Francisco (SUTRO) and in the Sacramento delta 
near Walnut Grove, CA (WGC).

Concentration Influence Functions
Atmospheric signals were calculated for specific heights at 

each site by multiplying surface CH4 emissions with influence 
functions, herein described as “footprints”, calculated with the
Stochastic Time-Inverted Lagrangian Transport (STILT) 
model (Lin, Gerbig et al., 2003). For each time point, the 
STILT model was configured to release 100 particles from the 
measurement location and then transport the particles 
backward in time 120 hr (5 days).
Meterological Models

Two sets of predicted meteorology were used to drive 
STILT.  The first set was calculated previously using a version 
(Medvigy et al., 2005) of the RAMS model.  The RAMS 
simulations were calculated at 45 km resolution for continental 
North America, and are henceforth labled BRAMS.  The 
second set was calculated using a modified version of the 
WRF model (Skamarock, 2005), with ouput variables 
optimized for use with STILT (Nehrkorn et al., 2007).  The 
WRF simulations were calculated on the nested grids at 40 
(black), 8 (red), and 1.6 (blue) km resolutions for the domains 
shown below. Only the simulations at WGC are described in 
this poster .

•Landfills (LF): computed with loading and composition data
•Natural gas (NG): Gas usage from the California Air 

Resources Board (CARB)
•Petroleum related (PL): non-reactive VOC emissions (CARB)
• Livestock (LS) CH4: Emissions factor analysis (CARB)
•Wetlands (WL): NASA-CASA model (Potter et. al., 2006)
•Agricultural soils (DNDC): DNDC model (Salas, 2006)

Using the WRF signals as ‘measurements’, y, and BRAMS as 
the ‘model’, fφ, we find that 1) the a posteriori uncertainties 
are reduced relative to the a prior uncertainty and 2) the λ
values are < 1.0, consistent with the CH4 signals simulated by 
WRF being smaller than those from BRAMS, particularly at 
night (see scatter plots).
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FURTHER WORK

• Estimate errors in WRF transport using surface and upper 
air measurements and incorporate into Sε.
• Investigate effects variable CH4 background on inverse 
model retrieval.
• Compare tower measurements from SUTRO and WGC 
with WRF-STILT predictions and retrieve CA estimates of 
CH4 emission from California.
•Incorporate additional tracers (e.g., CO, and CH4 isotopes) 
to improve source attribution.
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APPROACH

TRANSPORT MODELS

CH4 concentration “signals” are simulated for specific 
measurement sites using a priori emission maps and 
surface footprints that are calculated from an atmospheric 
Lagrangian transport model driven by mesoscale
meteorological model simulations. The simulated signals 
have noise added to them to reflect instrument uncertainty 
and errors due in the meteorological model.  Then an 
inverse model is used to reconstruct the best estimate of 
resulting a posteriori surface emissions and uncertainties, 
given the model inputs.

CH4 Concentrations Predicted by STILT

Inversion
Predicted CH4 concentrations, C, are calculated from the product 

of the STILT footprint, f, surface CH4 emissions F, and a 
background CH4 signal as:

I is influence function for background CH4 concentrations C0. In 
the following work, we solve for multiplicative scaling factors for 
the relative strength of the emissions sources such that:

where Φ is a priori CH4 emission map, and λ is the scaling factor, 
and ε is an error term.  In these simulations, C0 was assumed to be 
zero.  Following standard Baysian estimation methods for a linear 
system, the a posteriori estimate of λ and error covariance Sλ, are 
given by:

where y is the measured CH4 signal,           , and Sε and Sprior are 
the measurement and a priori and a posteriori error covariance 
matrices respectively (Lin et al. 2004). In the following work,  we 
set λprior = 1, Sprior = 0.09,  assuming emissions were known to 
30%.  Sε was estimated from a quadratic sum of instrument noise 
(assumed to be 1 ppb) and “transport error” estimated from the 
difference between the simulated WRF and BRAMS CH4 signals

Inversion Results (WGC 100m)

• Simulated CH4 signals obtained with BRAMS and WRF 
both show strong diurnal variations, and relatively consistent 
daytime concentrations, though nighttime concentrations 
differ.
• The inversion technique successfully retrieves the a priori 
emissions and improves on the a priori uncertainty in the 
existing emission inventory maps.
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Nested domains for WRF model simulations

Atmospheric CH4 concentrations predicted for the WGC  
tower at 100 m agl in July, 2004, are shown below. The left figure 
shows CH4 time series from WRF-STILT. At right, is the 
comparison of CH4 concentration from WRF-STILT and BRAMS-
STILT (time series not shown). WRF-STILT CH4 concentrations 
agree reasonably well with BRAMS for all sources, particularly 
wetland (WL), livestock (LS), natural gas (NG), and petroleum use 
(PL), which dominate the contribution to total CH4 signal in this 
simulation. The simulations show a strong diurnal cycle with lower 
daytime (green) and higher nighttime (red) CH4 concentrations.


